

Thermophysical Properties of Gen3 Molten Chloride Salts: Experimental Challenges Unique for High Temperature Liquids

Youyang Zhao, PhD
National Renewable Energy Laboratory
DOE SETO Gen3 CSP Summit 2021
Aug 25-26, 2021

Thermophysical Properties of Gen3 Molten Chlorides

- Melting point
- Liquid-state heat capacity
- Vapor pressure

Melting Point Measurement with DSC

- Main challenge The ternary salt is NOT expected to have a simple solid-to-liquid phase transition
 - Most likely, melting starts with a first-order phase transition (i.e., discontinuity in the first derivative of G) where a latent heat is involved
 - Easier to detect the eutectic or solidus with a DSC
 - Next, melting may complete with a higher-order phase transition (i.e., discontinuity in higher derivatives of G)
 - Much harder to detect the liquidus with a DSC

DTA scan of 80BaS/20Cu₂S (mol%) [2]

Eutectic Temp. and Composition – Thermodynamic Calculation

Educated guess by FactSage thermodynamic calculation

Eutectic Temp. and Composition – DSC Results

Liquidus at certain composition is easier to detect than at other compositions

Eutectic Temp. and Composition – DSC Results

Final Gen3 salt composition

	MgCl ₂	KCI	NaCl
Composition		mol.%	(<u>)</u>
Average	37.51	40.92	21.57
Stdev	1.16	1.54	1.72

Thermophysical Properties of Gen3 Molten Chlorides

- Melting point
- Liquid-state heat capacity
- Vapor pressure

- Practical challenge I Salt creeping
 - Pt crucible was found to cause easier creeping. Graphite crucible was found to have least creeping.

- Practical challenge II DSC crucible quality
 - Bubbling/delamination of graphite crucible will cause inconsistent heat transfer during measurement. Regular inspection is needed.

Practical challenge III – Reproducibility of sample/crucible position

- Ideally, the reference and sample crucibles need to stay at the exact same position across all runs.
- Crucible positioning using automatic sampling arm is preferred over manual positioning.

Liquid Heat Capacity

Heat Capacities for Other Liquids at Melting Point

Liquid Gas	C_p/R	Molten Oxides	C_p/R	Molten Halides	C_p/R
O_2	3.21	CaO	3.77	NaCl	4.16
Cl_2	4.03	Cu_2O	4.10	KBr	4.19
		MgO	4.03	MgI_2	4.02
		FeO	4.01	BaF_2	3.99
		Al_2O_3	4.63	$CaCl_2$	4.22
				KC1	5.11
		1		$MgCl_2$	3.71

Cp: <u>per-atom</u> heat capacity

All are higher than Dulong-Petit 3R limit on a per-mole-of-atoms basis. Simple calculation predicts 10.152R (Cp/R = 4.27) or 1.071 J/g K heat capacity for Gen3 chloride composition.

Key statistics:

- # of valid measurements:
 NREL (29), U-Arizona (15), GT (4)
- Overall standard deviation: 7-8% of average value
- Difference between averages of different labs: < 5%
- Difference from FactSage: <4%

Remaining unknowns – decreasing trend of Cp?

- Instrument contributions?
- The nature of Cp above the 3R limit?

Thermophysical Properties of Gen3 Molten Chlorides

- Melting point
- Liquid-state heat capacity
- Vapor pressure

Vapor Pressure Measurements

Practical challenge – removing effect from contaminations

Effect of Contaminations [4]

Vapor pressure of salts with different levels of Fe_2O_3 addition. The vapor pressure at each Fe_2O_3 addition was measured after at least three vacuum cycles to remove volatile species.

Vapor pressure for purified salt with 0.2 wt.% of Fe_2O_3 . Two samples were measured given by the solid and dashed lines. Cycles (1–4) were separated by manual removal of volatile species under vacuum.

Vapor Pressure Measurements

Challenge II – Identifying real gaseous species in the vapor

Experimental result is > 10x higher than thermodynamic calculation. Why??

Vapor Pressure Measurements

- Challenge II Identifying real gaseous species in the vapor
- We still don't know what is responsible for the significantly higher vapor pressure.
 - Water vapor? Oxide contaminant?
 - Complicated vapor species? Polymeric gaseous molecules in alkali halide vapor have been reported over 60 years ago (e.g., Na₂Cl₂ dimers [5])
- What technique(s) can be used?
 - FTIR? Is salt vapor transparent to IR like solid salts? Any reference data?
 - Mass spectroscopy? How do salt vapor molecules ionize?
 - Cold trap followed by analysis of the solids? How to ensure rapid quench to avoid possible phase transitions?
 - NREL is currently planning a Molten Chloride Salt Research Tank project led by Dr.
 Craig Turchi that could potentially provide some insights

Thank you

Contact Information

Youyang Zhao, Youyang.zhao@nrel.gov

NREL Thermal Energy Science & Technologies Group

https://www.nrel.gov/csp/

